Coincident Cathodoluminescence and Electron Channelling Contrast Imaging of Threading Dislocations in GaN

J. Bruckbauer^{1*}, G. Naresh-Kumar¹, N. Allehiani¹, P. R. Edwards¹, S. Kraeusel¹, B. Hourahine¹, S. Lovelock², M. J. Kappers², C. J. Humphreys², M. A. Moram^{2,3}, R. A. Oliver², R. W. Martin¹, and C. Trager-Cowan¹

¹Department of Physics, SUPA, University of Strathclyde, Glasgow G4 ONG, United Kingdom ²Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, United Kingdom ³Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom * jochen.bruckbauer@strath.ac.uk

Motivation

- Thick GaN templates commonly used for the growth of optoelectronic devices exhibit a relatively large *threading dislocation* (TD) density
- The impact of TDs on the optical properties shows a strong ambiguity in the literature
- Here we use a scanning electron microscope in a multi-mode configuration (CL & ECCI) to probe the structural and luminescence properties of a sample in one instrument
 - T. Hino et al., *Appl. Phys. Lett.* **76**, 3421 (2000) M. Albrecht et al., *Appl. Phys. Lett.* **92**, 231909 (2008)

Sample description

 Grown by metal-organic vapour phase epitaxy on a 5 μm GaN template on *c*-plane sapphire
 Intermediate structure: four n-doped

University of

Glasgow

Strathclyde

- 200 nm thick GaN layers with increasing Si-doping concentration ([Si]=5.5x10¹⁷-1.0x10¹⁹ cm⁻³) separated by 200 nm thick undoped GaN spacer layers
- top layer: 200 nm thick Si-doped GaN layer ([Si]=1.0x10¹⁸ cm⁻³) on GaN spacer

S. Das Bakshi et al., J. Cryst. Growth **311**, 232 (2009)

Cathodoluminescence (CL) hyperspectral imaging

200 nm Si-doped GaN

200 nm GaN

200 nm Si-doped GaN 200 nm GaN

200 nm Si-doped GaN

200 nm GaN

200 nm Si-doped GaN

200 nm GaN

200 nm Si-doped GaN

5 µm coalesced GaN

30 nm GaN NL

(0001) sapphire

- CL imaging is a powerful tool to investigate the luminescence behaviour of surface features and defects
- The electron beam is scanned across the surface while simultaneously acquiring an entire CL spectrum at each point, resulting in a large multi-dimensional (hyperspectral) data set
 Peaks can be numerically fitted to each spectrum in turn to extract 2D maps of parameters such as peak energy, line width or intensity

CL intensity

ECCI

P. R. Edwards et al., Microsc. Microanal. 18, 1212 (2012)

Electron channelling contrast imaging (ECCI)

- Differences in crystal orientation or different lattice constants give rise to contrast in backscattered electron images from a suitably orientated sample
- This allows low-angle tilt and rotation boundaries, atomic steps and threading dislocations to be imaged
- With ECCI it is also possible to unambiguously determine the three types of TDs in GaN

C. Trager-Cowan et al., Phys. Rev. B 75, 085301 (2007); G. Naresh-Kumar et al., Phys. Rev. Lett. 108, 135503 (2012)

Results

- The CL intensity map (generated by fitting each spectrum with a Voigt function) exhibits dark spots of various diameters, which are associated with non-radiative recombination at TDs
- Due to clustering a single and isolated TD is defined as a dark spot, separated by at least 400 nm from its nearest neighbour
- TDs appear as spots with black—white contrast in the ECCI image
 ECCI determined a TD density of (5.1±0.4)x10⁸ cm⁻² with 60% of the TDs being edge-type, <2% being screw-type and the remainder being mixed-type

2 µm

Atomic force microscope (AFM) measurements were performed on the same area to verify the TD density and their type by analysing etch pits created by a post-growth silane treatment
A *one-to-one* correlation was found between the dark spots in the CL map, spots with B—W contrast in the ECCI image and pits in the AFM image for single and isolated TDs

• From the AFM image it was possible to identify the TDs as being either of edge-type (labelled "E") or as TDs having a screw component, i.e. screw- or mixed-type (labelled "M")

- A comparison showed that single and isolated spots correspond to TDs of both edge- and screw-/mixed type
- It can be concluded that that pure edge TDs and TDs with a screwcomponent act as centres for non-radiative recombination in the investigated Si-doped GaN layer

2 μm

Summary

CL, ECCI and AFM have been performed on the same micron-scale area of a n-GaN sample
A one-to-one correlation was observed for

single and isolated TDs in these three images

 Pure edge TDs and TDs with a screw component act as centres for non-radiative recombination

Acknowledgements

